Mineral and energy resource assessment of the proposed Thaidene Nene National Park Reserve in the area of the East Arm of Great Slave Lake, Northwest Territories

D.F. Wright, E.J. Ambrose, D. Lemkow, and G.F. Bonham-Carter (Editors)
Mineral and energy resource assessment of the proposed Thaidene Nene National Park Reserve in the area of the East Arm of Great Slave Lake, Northwest Territories

D.F. Wright¹, E.J. Ambrose², D. Lemkow¹, and G.F. Bonham-Carter³

¹Geological Survey of Canada, 601 Booth Street, Ottawa, ON K1A 0E8
²Ambrose and Associates Consulting Services, 31 Oakvale Avenue, Ottawa, ON K1Y 3S3
³110 Aaron Merrick Drive, Merrickville, ON K0G 1N0

2013

©Her Majesty the Queen in Right of Canada 2013
doi:10.4095/292447

This publication is available for free download through GEOSCAN (http://geoscan.ess.nrcan.gc.ca/).

Recommended citation

Publications in this series have not been edited; they are released as submitted by the author.

Cover photo
TABLE OF CONTENTS

Executive Summary
D.F. Wright

- Introduction .. 1
- Study Area .. 1
- Compilation and Assessment Method 1
- Assessment Results 3
- References .. 12

Introduction to the Thaidene Nene Mineral and Energy Resource Assessment (MERA)
D.F. Wright

- History of the Thaidene Nene MERA 13
- Study Area .. 13
- MERA Process and Methodology 13
- Organization of this Report 18
- Acknowledgements 23
- References ... 23

PART 1

BEDROCK GEOLOGY STUDIES

Chapter 1. Bedrock Geology of the western Churchill Province and Taltson and Thelon Magmatic-Tectonic Zones, Thaidene Nene MERA Study Area
S. Tella, B.A. Kjarsgaard, and D. Lemkow

- Introduction .. 27
- Regional Setting .. 27
- Acknowledgements .. 36
- References ... 36
- Appendix 1A.1. Petrographic observations of samples from the Taltson and Thelon magmatic-tectonic zones and parts of the Churchill Province 40

Chapter 2. Slave Craton Bedrock Geology, Thaidene Nene MERA Study Area

- Introduction .. 47
- Bedrock Geology .. 48
- Metamorphism ... 70
- Economic Geology .. 70
- Acknowledgements .. 70
- References ... 70
- Appendix 2A.1. U-Pb analytical procedures 74
- Appendix 2A.2. Whole rock geochemistry sample preparation and analysis 75

Chapter 3. Proterozoic Geology of the East Arm Basin with Emphasis on Paleoproterozoic Magmatic Rocks, Thaidene Nene MERA Study Area

- Introduction .. 77
- Overview .. 80
- Analytical Methods 80
- Geology, East Arm Basin 84
- Great Slave Supergroup 86
- Discussion ... 95
- Relationship to Mineralization 95
- Acknowledgements 95
- References .. 96
- Appendix 3A.1. Whole-rock geochemistry data ... 98
Chapter 4. U-Pb detrital zircon geochronology of clastic sedimentary rocks of the Paleoproterozoic Nonacho and East Arm basins, Thaidene Nene MERA study area
O. van Breemen, B.A. Kjarsgaard, S. Tella, D. Lemkow, and L. Aspler

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>Geology</td>
<td>119</td>
</tr>
<tr>
<td>Samples</td>
<td>124</td>
</tr>
<tr>
<td>Detrital Zircon Geochronology</td>
<td>125</td>
</tr>
<tr>
<td>Discussion</td>
<td>129</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>133</td>
</tr>
<tr>
<td>References</td>
<td>133</td>
</tr>
<tr>
<td>Appendix 4A.1. U/Pb SHRIMP results for detrital zircon from the Nonacho and Athapusco basins</td>
<td>136</td>
</tr>
</tbody>
</table>

PART 2
SURFICIAL GEOLOGY STUDIES

Chapter 5. Surficial Geology of the Proposed National Park Reserve on the East Arm of Great Slave Lake

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>Methods</td>
<td>143</td>
</tr>
<tr>
<td>Regional Setting</td>
<td>143</td>
</tr>
<tr>
<td>Previous Work</td>
<td>144</td>
</tr>
<tr>
<td>Surficial Deposits</td>
<td>146</td>
</tr>
<tr>
<td>Bedrock and Associated Erosional Features</td>
<td>149</td>
</tr>
<tr>
<td>Glacial History</td>
<td>151</td>
</tr>
<tr>
<td>References</td>
<td>152</td>
</tr>
</tbody>
</table>

Chapter 6. Glaciofluvial Features and their Significance in the Proposed National Park Reserve, East Arm of Great Slave Lake
D.R. Sharpe, H.A.J. Russell, and R.D. Knight

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>155</td>
</tr>
<tr>
<td>Background</td>
<td>155</td>
</tr>
<tr>
<td>East Arm Glaciofluvial Features</td>
<td>163</td>
</tr>
<tr>
<td>Sediment Dispersal and Transport Data</td>
<td>173</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>186</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
</tr>
</tbody>
</table>

Chapter 7. Gold grain counts from till and esker samples in the proposed national park reserve, East Arm of Great Slave Lake

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>191</td>
</tr>
<tr>
<td>Sample Collection and Methodology</td>
<td>191</td>
</tr>
<tr>
<td>Results</td>
<td>193</td>
</tr>
<tr>
<td>Implications and Assessing Mineral Potential</td>
<td>197</td>
</tr>
<tr>
<td>References</td>
<td>197</td>
</tr>
<tr>
<td>Appendix 7A.1. Details of size and shape of all gold grains found in till and esker samples</td>
<td>198</td>
</tr>
<tr>
<td>Appendix 7A.2. Details of size and shape of gold grains found in till samples</td>
<td>249</td>
</tr>
<tr>
<td>Appendix 7A.3. Details of size and shape of gold grains found in esker samples</td>
<td>255</td>
</tr>
</tbody>
</table>
Chapter 13. Potential for Rare Earth and Rare Metal Deposits, Thaidene Nene MERA Study Area
B.A. Kjarsgaard

Introduction ... 357
Known Occurrences ... 357
Mineralization Potential in the Area of Interest 357
Acknowledgements ... 361
References ... 361

C.W. Jefferson

Abstract .. 363
Introduction .. 363
Current Uranium Assessment 363
Overall Radioactivity in the Study Area 373
Conclusions ... 373
Acknowledgements .. 373
References ... 373

J.W. Lydon, J.A. Kerswill, and R. Bretzlaff

Part A. General Background of Volcanogenic Massive Sulphide Deposits ... 377
Part B. Potential for volcanogenic Massive Sulphide Deposits in the Area of Interest
 East Arm of Great Slave Lake 388
Part C. Summary .. 413
Acknowledgements .. 415
References ... 415
Appendix 15A.1. Geochemistry of selected volcanic rocks from the deposits and showings within the Area of Interest ... 420

S.S. Gandhi, D. Lemkow, and J.A. Kerswill

Magmatic Ni-Cu-Platinum Group Elements-Sulphide Type of Deposits and Subtypes 423
Rutledge Lake Area .. 423
Exploration and Assessment Results 428
Metallogeny of the Rutledge River Basin Domain 429
Considerations for Resource Potential 430
Blatchford Lake Area .. 430
Smart Lake Area .. 432
Concluding Remarks .. 433
Acknowledgements .. 433
References ... 433

Chapter 17. Potential for Vein-Hosted Copper Mineralization in the Area of the Proposed Thaidene Nene National Park, East Arm of Great Slave Lake
S.S. Gandhi, J.A. Kerswill, and D. Lemkow

Introduction ... 437
Subdivision of Vein-Hosted Copper Deposits 437
East Arm Basin ... 437
Slave Craton ... 457
Acknowledgements .. 460
References ... 460
Chapter 18. Potential for Mississippi Valley-type Lead-Zinc Deposits in the Artillery Lake Area, Northwest Territories
S.S. Gandhi and J.A. Kerswill

- Introduction .. 463
- Lithostratigraphy of the Artillery Lake Formation .. 463
- Tectonic Evolution of the Artillery Lake Basin ... 463
- Stratigraphic and Structural Control of Mineralization ... 466
- Mineral and Metal Associations ... 467
- Fluid Inclusions in Quartz Associated with Sulphides .. 467
- Thermal State of Bitumen .. 467
- Lead Isotope Rations of Galena Separates ... 467
- Metallogeny of the Artillery Lake Basin ... 468
- Resource Potential .. 469
- Exploration Guides .. 470
- Acknowledgements .. 470
- References .. 470

Appendix 18A.1. Analyses of major, minor, and trace elements in samples from showings A-4, A-11, and A-24 at Artillery Lake ... 472

E.G. Potter, L. Corriveau, and J.A. Kerswill

- Introduction .. 477
- Iron Oxide-Copper-Gold Systems ... 477
- Historical Occurrences in the East Arm ... 481
- Mineral Resource Assessment Guidelines Specific to East Arm 485
- Resource Potential .. 488
- Acknowledgements .. 489
- References .. 489

J.W. Lydon, J.A. Kerswill, and R.E. Bretzlaff

- General Background of Sedimentary Exhalative Deposits 495
- Economic Importance of Sedex Deposits .. 495
- Classification of Sedex Deposits ... 497
- Geological Characteristics of Sedex Deposits .. 498
- Genetic Models .. 507
- Exploration Methods ... 510
- Assessment of the Potential for Sedex Deposits in the Proposed National Park East Arm of Great Salve Lake ... 510
- General Geology of the East Arm Area ... 510
- Sedex Potential of Paleoproterozoic Supracrustal Rocks .. 513
- Geochemical Indications from Glacial Till for a Sedex Ore System 517
- Resource Model Assessment from Geochemistry of Glacial Tills 517
- Conclusions and Recommendations ... 520
- Summary .. 521
- Conclusions ... 522
- Acknowledgements ... 523
- References .. 523
PART 4

GEOPHYSICS STUDIES

Chapter 21. Subcontinental Mantle Lithosphere Study Using Teleseismic Data for the East Arm of Great Slave Lake
D.B. Snyder

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>529</td>
</tr>
<tr>
<td>Fieldwork</td>
<td>529</td>
</tr>
<tr>
<td>Earthquake Data Analysis</td>
<td>529</td>
</tr>
<tr>
<td>Interpretation</td>
<td>536</td>
</tr>
<tr>
<td>Conclusions</td>
<td>540</td>
</tr>
<tr>
<td>References</td>
<td>540</td>
</tr>
</tbody>
</table>

PART 5

HYDROCARBON ASSESSMENT

Chapter 22. Petroleum Resource Potential for the Proposed National Park Reserve, East Arm of Great Slave Lake
P. K. Hannigan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>541</td>
</tr>
<tr>
<td>Introduction</td>
<td>541</td>
</tr>
<tr>
<td>Regional Geological Setting and History</td>
<td>541</td>
</tr>
<tr>
<td>Hydrocarbon Prospectivity of the Canadian Shield in the Northwest Territories</td>
<td>546</td>
</tr>
<tr>
<td>Petroleum Potential of the Thaidene Nene Study Area</td>
<td>548</td>
</tr>
<tr>
<td>Conclusions</td>
<td>550</td>
</tr>
<tr>
<td>References</td>
<td>550</td>
</tr>
</tbody>
</table>

PART 6

MINERAL DEPOSIT MODELLING

Chapter 23. Modelling Mineral Potential for the Thaidene Nene Study Area, East Arm of Great Slave Lake, Northwest Territories, Using GIS-Based Analytical Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>553</td>
</tr>
<tr>
<td>Introduction</td>
<td>555</td>
</tr>
<tr>
<td>Study Area</td>
<td>556</td>
</tr>
<tr>
<td>Bedrock Geology</td>
<td>556</td>
</tr>
<tr>
<td>Regional Setting</td>
<td>558</td>
</tr>
<tr>
<td>Mineral Occurrences</td>
<td>559</td>
</tr>
<tr>
<td>Quaternary Geology</td>
<td>560</td>
</tr>
<tr>
<td>Modelling Method</td>
<td>561</td>
</tr>
<tr>
<td>Results</td>
<td>564</td>
</tr>
<tr>
<td>Overall Mineral Potential</td>
<td>614</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>624</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>624</td>
</tr>
<tr>
<td>References</td>
<td>624</td>
</tr>
<tr>
<td>Appendix 23A.1. Mineral occurrence data</td>
<td>629</td>
</tr>
<tr>
<td>Appendix 23A.2. Geological evidence</td>
<td>638</td>
</tr>
<tr>
<td>Appendix 23A.3. Till geochemical data</td>
<td>639</td>
</tr>
<tr>
<td>Appendix 23A.4. Mineral-grain data</td>
<td>640</td>
</tr>
<tr>
<td>Appendix 23A.5. Geophysical data</td>
<td>640</td>
</tr>
<tr>
<td>Appendix 23A.6. Python scripts used for the thirteen exploration models</td>
<td>641</td>
</tr>
</tbody>
</table>
PART 7
DIGITAL SUPPLEMENTS

Digital Supplement 1. Bedrock geology of the proposed Thaidene Nene National Park Reserve in the area of the East Arm of Great Slave Lake, Northwest Territories, scale 1:500,000
 B.A. Kjarsgaard, S. Tella, and D. Lemkow

Digital Supplement 2. Surficial geology map, East Arm MERA study area, scale 1:250,000

Digital Supplement 3. Digital geoscience database: A contribution to the mineral and energy resource assessment of the area of interest for the proposed Thaidene Nene National Park Reserve
 D. Lemkow and D.F. Wright

Digital Supplement 4. Contoured single element maps of till geochemical data, East Arm MERA study area
 R. Knight and A. Plourde
INTRODUCTION

In 1970, an area of approximately 7400 km² comprising the East Arm of Great Slave Lake and adjacent lands and waters was withdrawn under the Territorial Lands Act for a proposed national park (Fig. 1). However, there was little activity toward creating the park until the early 1980s when negotiations for a national park resumed. At that time the Geological Survey of Canada (GSC) published an Open File report (Roscoe et al., 1987) documenting a mineral and energy resource assessment (MERA) for the Area of Interest (AOI) between Artillery Lake and Hearne Channel on the East Arm of Great Slave Lake. In October 2002, the Federal Government announced its Action Plan to Protect Canada’s Natural Heritage and as part of this plan, the Federal Government committed to the expansion of the national parks system. The Lutsel K’e Dene First Nation (LKDFN) formally agreed to enter into negotiations with Canada for planning a protected area in their traditional territory in 2004 and defined 57,000 km² (named Thaidene Nene – Land of the Ancestors) for consideration as a national park. In October 2006, Parks Canada Agency and the Lutsel K’e Dene First Nation signed a three (3) year Memorandum of Understanding (MOU) within the Akaítcho Process, agreeing to work cooperatively towards completing work on aspects of a feasibility study for the possible establishment of a national park. In 2007, a larger land parcel was withdrawn for a five year period under the Territorial Lands Act for proposed national park purposes. This area in combination with the original 1970 land withdrawal (approximately 33,500 km²) became the current AOI for this national park assessment (Fig. 1).

The current AOI encompasses regions with deposit types that were previously known (e.g. Ni-Cu, rare metals) but not considered in detail by Roscoe et al. (1987) because they were outside the study area being evaluated at the time. In addition, deposit types not known to exist in this area in the 1980s, for example kimberlite-hosted diamonds, have been identified in the region of/proximal to the expanded AOI. Furthermore, new and revised mineral deposit models have been developed that could be applied to the area of the proposed park and thereby update knowledge about areas of mineral interest.

This MERA was thus undertaken for the new, expanded AOI to complement and expand the previous MERA.

STUDY AREA

The study area evaluated for mineral and energy potential includes the expanded AOI plus an additional area of up to 30 km surrounding the AOI (Fig. 1). The combined area, here termed the Area of Compilation (AOC), encompasses approximately 79,300 km². The irregular boundary of the expanded AOI (hereafter termed just AOI) is based largely on drainage patterns. It extends approximately 315 km northeast from Hearne Channel in the East Arm of Great Slave Lake, up to and including Sifton Lake. The 33,500 km² AOI includes the Pethie, Kahochella, and Douglas peninsulas, Redcliff Island, and extensive water areas in McLeod and Christie bays in Great Slave Lake as well as Artillery Lake. In order to provide adequate understanding of the geology and metallogenic domains that transect the core of the AOI, it was deemed necessary to expand the study area to that outlined by the AOC (Fig. 1).

COMPILATION AND ASSESSMENT METHOD

The MERA includes field surveys, conducted in 2008 and 2009, laboratory studies, and analyses in order to obtain improved geochemical and geological knowledge. This additional knowledge improves the level of certainty and confidence in assessing the mineral and energy potential. This MERA report has five major components:

1. Bedrock Geology. A total of 566 field sites were documented over two field seasons, resulting in an updated bedrock geology map, which was the essential context for assessing the potential for various resource deposits in the AOC.

2. Mineral and Hydrocarbon Occurrences. During the two field seasons, 51 mineral occurrences were examined to verify the commodity and investigate the geological setting. Based on the data compiled from existing sources and site visits, the mineral occurrences were interpreted to represent fifteen different deposit types, thirteen of which have been qualitatively assessed.

3. Mantle Teleseismic Tomography. Ten teleseismic
stations were installed in a northwest-trending linear array, crossing Artillery Lake and approximately bisecting the AOC. Data were collected from these stations between July 2008 and June 2010. Though not conclusive, interpretation of the data suggests that the mantle lithosphere, which is presumed to be the source of the diamondiferous kimberlite of Gahcho Kué, underlies all of the AOI.

4. Quaternary Geology. Data obtained from fieldwork resulted in an updated surficial materials map, a till geochemistry database, an indicator mineral database, and a more comprehensive understanding of glacial and fluvial flow directions.

5. GIS Database Compilation and Resource Potential Modelling. A GIS-based procedure has been systematically applied to assess the mineral potential in the AOI as well as the expanded AOC. Thirteen mineral-deposit types were selected as being the most likely to occur in the area.

For each deposit type, a resource potential model was developed and applied, based on geological, structural, geochemical, mineralogical, and geophysical evidence that has been captured in a digital database as raster maps. The spatial data were assembled by compiling knowledge from existing maps and mineral occurrence databases. A new database of mineral occurrences (deposits, drilled showings or prospects, and showings; n=499) was compiled and classified according to the different mineral-deposit types; this database provided key information for evaluating mineral potential. In addition, fieldwork during 2008 and 2009 resulted in new geochemical and mineralogical data from till and esker samples, updated the geological maps, and supplementary information from selected mineral occurrences.

The raster evidence maps that constitute the assessment guides for each deposit type were combined using a scoring and weighting system, fine-tuned by experts in each deposit type under consideration. A “knowledge-driven” weighted-overlay approach was applied.
as opposed to a “data-driven” approach that uses a statistical prediction method) yielding a mineral potential map for each of the thirteen deposit types. The resulting predictive maps rated mineral potential as scores ranging from 1 to 5, which correlates to 1 representing low potential; 2, low-to-moderate; 3, moderate; 4, moderate-to-high; and 5 representing high potential.

ASSESSMENT RESULTS

1. **Volcanogenic massive sulphide deposits**
 The Indian Mountain Belt includes areas rated as having both high and moderate-to-high potential (scores of 5 and 4) for volcanogenic massive sulphide (VMS) deposits, with several deposits and numerous prospects and showings. These prospective areas lie entirely outside the AOI, although the zone with moderate-to-high potential (score = 4) extends close to the northern boundary of the AOI. In the vicinity of Clinton-Colden Lake, an area with two zones that also have moderate-to-high VMS potential (score = 4) straddles the AOI boundary; a drilled showing falls within this area, just north of the AOI boundary. (Fig. 2)

2. **Peraluminous granite-pegmatite rare metals**
 An area north of Hearne Channel, which is well west of the AOI, has high and moderate-to-high potential (scores of 4 and 5). This is an area with deposits, prospects, and showings. (Fig. 4)

3. **Peralkaline-syenite rare-metals**
 Mineral potential ratings of high and moderate-to-high (scores of 4 and 5) occur in an area also northwest of the Hearne Channel (Thor Lake), but further west than the area with granite-pegmatite rare-metal potential. This prospective zone includes deposits (Nechalacho Project) but is also well outside the AOI. (Fig. 5)

4. **Lode gold**
 There are three areas with moderate-to-high potential (a score of 4) for lode gold near the northern Walmsley Lake, straddling the AOI boundary. Although no occurrences in this area fall within the AOI, three drilled showings are just outside the AOI boundary. The deposits and prospects that comprise Gahcho Kué lie between 4 and 5 km outside the AOI. A relatively small zone lies about 40 km northwest of Gahcho Kué, near the boundary of the AOC; this zone has a moderate-to-high diamond potential (score = 4) and includes a drilled showing. (Fig. 3)
boundary of the AOI. An area just west of Ptarmigan Lake lies entirely within the AOI, and an area near Fletcher Lake lies mostly within the AOI. The third area lies about 6 km outside the northern boundary of the AOI. Although there are no lode gold occurrences in these areas, they are regarded as prospective because of favourable evidence from mineral grain counts and from geochemical analyses of till samples, as well as the presence of favourable rock types (Fig. 6).

5. **Vein-hosted uranium**

There are many occurrences of vein-hosted uranium mineralization in the Area of Compilation. A large area south of the AOI (Nonacho Lake, Tronka Chua Lake, and MacInnis Lake areas) has high and moderate-to-high potential (scores of 5 and 4), with one deposit being located in this zone. There are two relatively small areas that have moderate-to-high potential (score = 4) for this deposit type within the AOI, but these are near the AOI boundary, close to Tent Lake. The larger of these areas has several prospective zones, one of which includes a showing. (Fig. 7)

6. **Sandstone-hosted uranium**

Several areas within the AOI have moderate potential (score = 3) but none have moderate-to-high or high potential (score = 4 or 5). These areas are generally proximal to the McDonald Fault system and extend from near Wilson Island west of the AOI through a central zone that straddles the AOI boundary east of Lutsel K’e to a zone near Reliance in the east. Twenty-three of the forty sandstone-hosted uranium occurrences are located in these zones. Another area with moderate potential, which is largely within the AOI, includes a zone proximal to Taltheilei Narrows and extends across several islands in McLeod Bay. No occurrences are known there (Fig. 8).

8. **Mississippi Valley-type lead-zinc**

Although a number of veins of Mississippi Valley-type (MVT) are found in the Artillery Lake area, mineralization potential never exceeds moderate (score = 3). The areas of moderate potential include a significant portion of the Artillery Lake area and an area near Reliance (Fig. 9).

9. **Vein-hosted copper**

There are many vein-hosted Cu prospects and showings within the AOC and there is an area of mineralization near Meridian Lake that has moderate-to-high potential (score = 4). This area includes 14 occurrences (4 drilled showings and 10 showings). Eight of these (3 drilled showings and 5
Executive Summary

Figure 4. Map showing the modelled potential for peraluminous granite-pegmatite rare metal occurrences.

Figure 5. Map showing the modelled potential for peralkaline syenite rare metal occurrences.
Figure 6. Map showing the modelled potential for lode gold occurrences.

Figure 7. Map showing the modelled potential for vein-hosted uranium occurrences.
Executive Summary

Figure 8. Map showing the modelled potential for sandstone-hosted uranium occurrences.

Figure 9. Map showing the modelled potential for Mississippi Valley-type occurrences.
showings) are auriferous (Fig. 10).

10. Iron oxide-copper-gold
An area comprising two zone of moderate-to-high potential (score = 4) straddles the AOI boundary near Lutsel K’e. The larger patch zone includes 5 occurrences (4 drilled showings and 1 showing) that are very near the AOI boundary (Fig. 11).

11. Magmatic nickel-copper sulphides
Mineral potential for this deposit type did not exceed moderate (scores ≤ 3) in the AOC. However, south of the AOI, there is a curvilinear cluster of 21 occurrences (9 drilled showings and 12 showings) that approaches the AOI boundary; within this cluster, there is a small area of moderate potential (score = 3) where 3 drilled showings and 3 showings are located (Fig. 12).

12. Chromite
No chromite occurrences or layered mafic to ultramafic intrusions, which are diagnostic host rocks for chromite deposits, have been mapped in the AOC. Nevertheless, mineral grain counts indicate that these types of host rocks probably are present in the eastern part of the AOI, and have not yet been identified in outcrop. An extensive area of moderate potential (score = 3) is found north of Whitefish Lake, some of which is inside the AOI boundary (Fig. 13).

13. Sedimentary exhalative
Although no sedimentary exhalative (Sedex) mineralization has been identified within the AOC, the mineral-potential model suggests moderate-to-high potential (score = 4) for this important deposit type in an area that straddles the AOI boundary near Lutsel K’e and extends to Reliance (well within the AOI). Seven of the eight occurrences (veins of barite and barite-sulphide, which may reflect Sedex prospectivity) occur within this area (Fig. 14).

The results of this study indicate that there are areas near the boundary of the Area of Interest (AOI) for the proposed park where the mineral potential is moderate-to-high or high (scores of 4 or 5, respectively). These key areas along the northern boundary of the AOI have very elevated potential for diamond and/or gold occurrences (Figs. 3 and 6). Some consideration should also be given to the areas near Lutsel K’e, along the Murky Channel Fault and McDonald Fault systems where the potential for IOCG, and/or Sedex, and/or vein-hosted copper occurrences is assessed as moderate-to-high (score = 4).

Hydrocarbon Potential
The possibility of petroleum accumulations can be dismissed unequivocally for the large areas of Archean to Paleoproterozoic igneous and intensely metamor-
Executive Summary

Figure 11. Map showing the modelled potential for iron oxide-copper-gold (IOCG) occurrences.

Figure 12. Map showing the modelled potential for magmatic nickel-copper sulphide occurrences.
Figure 13. Map showing the modelled potential for chromite occurrences.

Figure 14. Map showing the modelled potential for sedimentary exhalative (Sedex) occurrences.
phosed bedrock exposed across Slave Craton, the Taltson magmatic-tectonic zone, and the northwest Churchill Terrane, which covers most of the Area of Interest. For the remaining portions of the AOI, the unmetamorphosed Paleoproterozoic East Arm fold and thrust belt in the southwestern portion of the proposed park, there is also little possibility of unconventional oil and gas accumulation and preservation.

Composite Resource Potential

An overall mineral-potential map was created by identifying areas (or spatial ‘patches’) where mineral potential was rated as moderate-to-high or high (scores of 4 or 5, respectively) for any of the thirteen deposit types being examined and combining the results. This combined map was then annotated and interpreted in order to summarize which type(s) of deposits are predicted in each patch. (Fig. 15)

Caveats

The results of this mineral and energy resource assessment are based on the best geoscience information currently available. They reflect the present knowledge of the geology and mineral deposit models known or thought to be important in the AOI for the proposed Thaidene Nene national park. The GIS-modelling approach employed in this study was effective for managing the large amount of spatial data that were interpreted, for documenting the methodology, and for ensuring reproducible results. However, it should be noted that geological knowledge is not static; it is continually being refined and expanded. In addition, the GIS model was “expert” driven, which introduces some subjectivity. As a result, there will always be uncertainties associated with resource potential analysis that can only be lessened through renewed investigations using the most current knowledge as future land use issues arise.

REFERENCES
